Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0247545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626077

RESUMO

Leaf-cutting ants of the genera Atta and Acromyrmex are at constant risk of epizootics due to their dense living conditions and frequent social interactions between genetically related individuals. To help mitigate the risk of epizootics, these ants display individual and collective immune responses, including associations with symbiotic bacteria that can enhance their resistance to pathogenic infections. For example, Acromyrmex spp. harbor actinobacteria that control infection by Escovopsis in their fungal gardens. Although Atta spp. do not maintain symbiosis with protective actinobacteria, the evidence suggests that these insects are colonized by bacterial microbiota that may play a role in their defense against pathogens. The potential role of the bacterial microbiome of Atta workers in enhancing host immunity remains unexplored. We evaluated multiple parameters of the individual immunity of Atta cephalotes (Linnaeus, 1758) workers, including hemocyte count, encapsulation response, and the antimicrobial activity of the hemolymph in the presence or absence of bacterial microbiota. Experiments were performed on ants reared under standard conditions as well as on ants previously exposed to the entomopathogenic fungus Metharrizium anisopliae. Furthermore, the effects of the presence/absence of bacteria on the survival of workers exposed to M. anisopliae were evaluated. The bacterial microbiota associated with A. cephalotes workers does not modulate the number of hemocytes under control conditions or under conditions of exposure to the fungal pathogen. In addition, infection by M. anisopliae, but not microbiota, increases the encapsulation response. Similarly, the exposure of workers to this fungus led to increased hemolymph antimicrobial activity. Conversely, the removal of bacterial microbiota did not have a significant impact on the survival of workers with M. anisopliae. Our results suggest that the bacterial microbiota associated with the cuticle of A. cephalotes workers does not play a role as a modulator of innate immunity, either at baseline or after exposure to the entomopathogen M. anisopliae. Further, upon infection, workers rely on mechanisms of humoral immunity to respond to this threat. Overall, our findings indicate that the bacterial microbiota associated with A. cephalotes workers does not play a defensive role.


Assuntos
Formigas/fisiologia , Imunidade Inata/fisiologia , Metarhizium , Microbiota/fisiologia , Micoses/veterinária , Animais , Micoses/imunologia
2.
Salud UNINORTE ; 35(2): 277-297, mayo-ago. 2019. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1115907

RESUMO

RESUMEN En las gestantes obesas se han observado complicaciones, incluyendo prevalencia de abortos espontáneos y preeclampsia. Se ha propuesto que en parte estas complicaciones podrían explicarse por el ambiente inflamatorio que predomina en la obesidad. La enzima indolami-na-2,3-dioxigenasa 1 (IDO1) es inducida por la citoquina pro-inflamatoria IFN-y, por lo que se ha sugerido un incremento en su expresión en pacientes obesos. IDO1 desempeña funciones claves durante el embarazo, entre las que se encuentra el establecimiento de la tolerancia materno-fetal, la placentación y la regulación del flujo sanguíneo en la placenta. Hasta el momento los estudios que evalúan la expresión de IDO1 en la gestación en condiciones de obesidad son escasos. Por lo tanto, en esta revisión se propuso explorar las implicaciones derivadas de la alteración en la expresión de esta enzima en gestantes obesas. Según la evidencia disponible en la literatura, es posible que en gestantes obesas se presente un aumento en la expresión y la actividad de IDO1. Estas modificaciones podrían tener efectos deletéreos sobre la gestación y estar relacionada con las complicaciones que se observan en gestantes obesas.


ABSTRACT Women who have an obese body mass index are more likely to experience pregnancy complications, including spontaneous abortion and preeclampsia. It has been suggested that these complications are at least in part related to the pro-inflamatory environment that predominates in obesity. Indoleamine-2,3-dioxygenase 1 is an enzyme induced downstream IFN-y signalling, hence it has been suggested that it increases its expression and activity in obese patients. IDO1 exerts multiple functions in pregnancy, including its contribution to materno-fetal tolerance, placentation and regulation of placental blood flow. The evidence about IDO1 in pregnant obese women is scarce. Therefore, herein the implications of an overexpression of IDO1 in pregnant obese patients were explored. The evidence available at the moment suggests that it is possible that IDO1 increases its expression and activity in pregnant obese women contributing to the complications observed on these patients.

3.
Immunity ; 40(2): 274-88, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530056

RESUMO

Macrophage activation is associated with profound transcriptional reprogramming. Although much progress has been made in the understanding of macrophage activation, polarization, and function, the transcriptional programs regulating these processes remain poorly characterized. We stimulated human macrophages with diverse activation signals, acquiring a data set of 299 macrophage transcriptomes. Analysis of this data set revealed a spectrum of macrophage activation states extending the current M1 versus M2-polarization model. Network analyses identified central transcriptional regulators associated with all macrophage activation complemented by regulators related to stimulus-specific programs. Applying these transcriptional programs to human alveolar macrophages from smokers and patients with chronic obstructive pulmonary disease (COPD) revealed an unexpected loss of inflammatory signatures in COPD patients. Finally, by integrating murine data from the ImmGen project we propose a refined, activation-independent core signature for human and murine macrophages. This resource serves as a framework for future research into regulation of macrophage activation in health and disease.


Assuntos
Perfilação da Expressão Gênica , Ativação de Macrófagos/imunologia , Modelos Biológicos , Transcriptoma/genética , Animais , Células Cultivadas , Humanos , Camundongos
4.
Innate Immun ; 20(4): 401-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23940074

RESUMO

Induction of indoleamine 2,3-dioxygenase (IDO1) is an established cellular response to infection with numerous pathogens. Several mechanisms, such as IDO1-mediated tryptophan (Trp) depletion, but also accumulation of Trp catabolites, have been associated with the antimicrobial effects of IDO(+) cells. Recent findings of IDO1 as an immunoinhibitory and signaling molecule extended these previous observations. Using infection of professional phagocytes with Listeria monocytogenes (L.m.) as a model, we illustrate that IDO1 induction is a species-specific event observed in human, but not murine myeloid, cells. Knockdown and inhibition experiments indicate that IDO1 enzymatic activity is required for the anti-L.m. effect. Surprisingly, the IDO1-mediated antimicrobial effect is less prominent when Trp is depleted, but can be significantly amplified by tryptophan excess, leading to increased accumulation of catabolites that promote enhanced bactericidal activity. We observed a pathogen-specific pattern with kynurenine and 3-hydroxy-kynurenine being most potent against L.m., but not against other bacteria. Hence, apparent discrepant findings concerning IDO1-mediated antimicrobial mechanisms can be reconciled by a model of species and pathogen-specificity of IDO1 function. Our findings highlight the necessity to consider species- and pathogen-specific aspects of host-pathogen interactions when elucidating the individual role of antimicrobial proteins such as IDO1.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Células Mieloides/fisiologia , Animais , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , RNA Interferente Pequeno/genética , Especificidade da Espécie , Triptofano/metabolismo , Regulação para Cima
5.
PLoS One ; 7(9): e45466, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029029

RESUMO

Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.


Assuntos
Perfilação da Expressão Gênica , Macrófagos/metabolismo , Transcriptoma , Processamento Alternativo , Análise por Conglomerados , Exoma , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunofenotipagem , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/metabolismo
6.
Front Immunol ; 3: 274, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969767

RESUMO

The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.

7.
PLoS One ; 7(5): e37349, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629382

RESUMO

The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox)). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi) monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.


Assuntos
Listeriose/genética , Células Mieloides/metabolismo , PPAR gama/genética , Animais , Células Cultivadas , Citocinas/metabolismo , Listeria monocytogenes , Listeriose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , PPAR gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...